Matematika

Pertanyaan

diketahui vektor a=i+2j-xk vektor b=3i-2j+k dan c=2i+j+2k. jika a tegak lurus c maka (a+b).(a-c) hasilnya adalah

1 Jawaban

  • Kode : 12.2.4 [Kelas 12 Matematika BAB 4 - Vektor]

    Diketahui
    [tex]a= \left[\begin{array}{ccc}1\\2\\-x\end{array}\right] \\b= \left[\begin{array}{ccc}3\\-2\\1\end{array}\right] \\c = \left[\begin{array}{ccc}2\\1\\2\end{array}\right][/tex]

    Karena saling tegak lurus, 
    [tex]a.c=0[/tex]
    Sehingga
    [tex] \left[\begin{array}{ccc}1\\2\\-x\end{array}\right] . \left[\begin{array}{ccc}2\\1\\2\end{array}\right]=0[/tex]
    (1)(2) + (2)(1) + (-x)(2) = 0
    4 = 2x
    x = 2
    Jadi vektor [tex]a= \left[\begin{array}{ccc}1\\2\\-2\end{array}\right][/tex]

    Siapkan a + b
    [tex]a+b= \left[\begin{array}{ccc}1\\2\\-2\end{array}\right]+ \left[\begin{array}{ccc}3\\-2\\1\end{array}\right] = \left[\begin{array}{ccc}4\\0\\-1\end{array}\right] [/tex]
    Siapkan a - c
    [tex]a-c= \left[\begin{array}{ccc}1\\2\\-2\end{array}\right]- \left[\begin{array}{ccc}2\\1\\2\end{array}\right] = \left[\begin{array}{ccc}-1\\1\\-4\end{array}\right] [/tex]

    (a + b).(a - c) = ? 

    [tex] \left[\begin{array}{ccc}4\\0\\-1\end{array}\right] . \left[\begin{array}{ccc}-1\\1\\-4\end{array}\right] =(4)(-1)+(0)(1)+(-1)(-4) [/tex]

    Jadi (a + b).(a - c) = 0.



Pertanyaan Lainnya