Matematika

Pertanyaan

tentukan persamaan bayangan garis y=4x-1 jika dirotasikan R[tex] \left[\begin{array}(O,270°\end{array}\right] [/tex] 
kemudian ditranslasikan
T=[tex] \left[\begin{array}{ccc}-2\\5\end{array}\right] [/tex]

1 Jawaban

  • Rotasi (0,270)
    [tex] \binom{ {x}^{c} }{ {y}^{c} } = \binom{x}{y} \binom{ \cos(270) \: \: \: \: - \sin(270) }{ \sin(270) \: \: \: \: \cos(270) } = \binom{x}{y} \binom{0 \: \: \: \: 1}{ - 1 \: \: \: \: 0} = \binom{ - y}{x} \\ \\ \binom{ {x}^{c} }{ {y}^{c} } = \binom{ - y}{x} [/tex]
    Translasi (-2,5)

    [tex] \binom{ {x}^{cc} }{ {y}^{cc} } \: = \binom{ - y}{x} + \binom{ - 2}{5} = \binom{ - y - 2}{x + 5} \\ \\ {x}^{cc} = - y - 2 \\ y = - {x}^{cc} - 2 \\ \\ {y}^{cc} = x + 5 \\ x = {y}^{cc } - 5[/tex]
    y = 4x - 1
    (-x" - 2) = 4(y"+5)-1
    -x" - 2 = 4y" + 20 - 1
    4y" + x" + 21 = 0

    Bayangan =
    4y + x + 21 = 0
    atau
    x + 4y + 21 = 0

Pertanyaan Lainnya