tentukan persamaan bayangan garis y=4x-1 jika dirotasikan R[tex] \left[\begin{array}(O,270°\end{array}\right] [/tex] kemudian ditranslasikan T=[tex] \left[\be
Matematika
BF9
Pertanyaan
tentukan persamaan bayangan garis y=4x-1 jika dirotasikan R[tex] \left[\begin{array}(O,270°\end{array}\right] [/tex]
kemudian ditranslasikan
T=[tex] \left[\begin{array}{ccc}-2\\5\end{array}\right] [/tex]
kemudian ditranslasikan
T=[tex] \left[\begin{array}{ccc}-2\\5\end{array}\right] [/tex]
1 Jawaban
-
1. Jawaban AnggitaSeveners
Rotasi (0,270)
[tex] \binom{ {x}^{c} }{ {y}^{c} } = \binom{x}{y} \binom{ \cos(270) \: \: \: \: - \sin(270) }{ \sin(270) \: \: \: \: \cos(270) } = \binom{x}{y} \binom{0 \: \: \: \: 1}{ - 1 \: \: \: \: 0} = \binom{ - y}{x} \\ \\ \binom{ {x}^{c} }{ {y}^{c} } = \binom{ - y}{x} [/tex]
Translasi (-2,5)
[tex] \binom{ {x}^{cc} }{ {y}^{cc} } \: = \binom{ - y}{x} + \binom{ - 2}{5} = \binom{ - y - 2}{x + 5} \\ \\ {x}^{cc} = - y - 2 \\ y = - {x}^{cc} - 2 \\ \\ {y}^{cc} = x + 5 \\ x = {y}^{cc } - 5[/tex]
y = 4x - 1
(-x" - 2) = 4(y"+5)-1
-x" - 2 = 4y" + 20 - 1
4y" + x" + 21 = 0
Bayangan =
4y + x + 21 = 0
atau
x + 4y + 21 = 0