Matematika

Pertanyaan

Tolong dibantu kak soalnya
Tolong dibantu kak soalnya

1 Jawaban

  • Integral Tentu
    Kelas XII

    [tex] \int_{\frac12}^{1} (\cos \pi x - \sqrt{4x-1} ) dx \\
    = \int_{\frac12}^{1} \cos \pi x \ dx - \int_{\frac12}^{1} \sqrt{4x-1} \ dx \\
    \\
    Kita \ tinjau \ \int_{\frac12}^{1} \sqrt{4x-1} \ dx [/tex]
    Misal u = 4x - 1
    du/dx = 4
    dx = ΒΌ du

    Maka
    [tex] \int_{\frac12}^{1} \sqrt{4x-1} \ dx \\
    \int_{\frac12}^{1} \frac14 \sqrt{u} \ du \\
    = | \frac14 \times \frac23 \ u \sqrt{u} |_{\frac12}^{1} \\
    = | \frac{(4x-1) \sqrt{4x-1}}{6} |_{\frac12}^{1} \\
    = ( \frac{(4(1) - 1) \sqrt{4(1) - 1)}}{6} ) - (\frac{(4(\frac12) - 1) \sqrt{4(\frac12) - 1}}{6}) \\
    = \frac{ \sqrt{3}}{3} - \frac16 \\
    \\
    Tinjau \ \int_{\frac12}^{1} \cos \pi x dx \\
    \int_{\frac12}^{1} \cos \pi x dx \\
    = | \frac{\sin \pi x}{ \pi} |_{\frac12}^{1} \\
    = \frac{\sin \pi }{ \pi} - \frac{\sin \frac12 \pi }{ \pi} \\
    = - \frac{1}{ \pi } \\
    Maka \\
    \int_{\frac12}^{1} (\cos \pi x - \sqrt{4x-1} ) dx \\
    = - \frac{1}{ \pi} - ( \frac{ \sqrt{3}}{3} - \frac16 ) \\
    = \frac{\pi - 3 \sqrt3 \pi - 6}{6 \pi} [/tex]

    Jawaban : E